
A Morphogenetically Assisted Design Variation Tool∗

Aaron Adler1, Fusun Yaman1, Jacob Beal1, Jeffrey Cleveland1, Hala Mostafa1, Annan Mozeika2

1Raytheon BBN Technologies, Cambridge, MA 02138, 2iRobot Corporation, Bedford, MA 01730
{aadler, fusun, jakebeal, jcleveland, hmostafa}@bbn.com, amozeika@irobot.com

Abstract

The complexity and tight integration of electromechani-
cal systems often makes them “brittle” and hard to mod-
ify in response to changing requirements. We aim to
remedy this by capturing expert knowledge as func-
tional blueprints, an idea inspired by regulatory pro-
cesses that occur in natural morphogenesis. We then
apply this knowledge in an intelligent design variation
tool. When a user modifies a design, our tool uses
functional blueprints to modify other components in re-
sponse, thereby maintaining integration and reducing
the need for costly search or constraint solving. In this
paper, we refine the functional blueprint concept and
discuss practical issues in applying it to electromechan-
ical systems. We then validate our approach with a case
study applying our prototype tool to create variants of a
miniDroid robot and by empirical evaluation of conver-
gence dynamics of networks of functional blueprints.

Introduction
Electromechanical systems, such as robots, vehicles, or con-
sumer electronics, tend to be brittle in their design, par-
ticularly as the complexity of a system’s design increases.
Once a system has been constructed, it is difficult to mod-
ify the design without a vast number of consequences that
can be unpredictably difficult and costly to address. Ani-
mals, on the other hand, are extremely complex, yet adapt
gracefully as they grow and develop, with many feedback
loops acting together to make changes that maintain the in-
tegration of the organism as a whole. Indeed, the flexi-
bility and dynamicism of integration appear to be key en-
ablers of the evolution of biological life (Carroll 2005;
Kirschner and Norton 2005).

We aim to enable such adaptability in the design of engi-
neered systems, so that when a designer modifies one ele-
ment of a design, the rest of the design automatically adjusts
to compensate. Functional blueprints (FBs) (Beal 2011) are
a proposed approach to adaptability inspired by biological
development, which capture expert knowledge by specifying

∗Work sponsored by DARPA DSO under contract W91CRB-
11-C-0052; the views and conclusions contained in this document
are those of the authors and not DARPA or the U.S. Government.
Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) miniDroid (b) CAD model

Figure 1: Even relatively simple electromechanical designs
like this miniDroid robot frequently contain a large number
of tightly integrated components.

a design through behavioral goals and a method for adjust-
ing the structure when those goals are not met. In this paper,
we refine the FB framework and apply it to the problem of
electromechanical design, constructing an interactive design
tool that uses functional blueprints to maintain integration
of a design as it is being modified by a user. We validate
this approach with a case study applying our tool to create
a miniDroid variant that is capable of climbing a step over
five times higher than the original specification. Finally, we
test the generalizability of FBs by comparing against genetic
algorithms on random networks of design constraints.

Motivating Example: miniDroid
Consider an electromechanical design, such as the
miniDroid robot shown in Figure 1: a small tracked robot
capable of climbing over obstacles up to a certain height us-
ing its flippers. Even in this relatively simple design, tightly
integrated components mean small changes frequently cause
a cascade of other changes to preserve design functionality.
For example, consider this cascade in a miniDroid:

1. The user increases the expected height of an obstacle.

2. Climbing higher requires a longer flipper and body.

3. Mobility of a larger robot requires stronger motors.

4. Endurance with stronger motors requires larger batteries.

5. Larger batteries add more mass, which may require dif-
ferent slightly larger motors, etc.

Note that some functions, such as the ability to climb a
step, can be evaluated in simulation, but have no closed-form

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

9

Models'

Morphogene-c'Simulator'

Stress'Converter'

Blend'Stresses'

FB''Executor'

Blend'Updates'

Fu
nc
-o

na
l''

Bl
ue

pr
in
ts
'(F
B)
'

1'Current''
''''Design'

3'Updated'
''''Design'

2$Evalua-on'Metrics'

Evaluators'
Sta-c'Model'Evaluator'

Cost'Evaluator'

Environmental'Evaluator'
(obstacle'courses)'

Figure 2: The MADV architecture iteratively adapts a de-
sign against a collection of functional blueprints (FBs) using
a three stage loop: (1) evaluating system behavior, (2) blend-
ing the action of all of the FBs in a morphogenetic simulator,
and (3) producing an incrementally modified design.

analytical evaluation. The simulation requirement precludes
parametric design, and makes it prohibitively costly to use
most search or optimization techniques. Our aim is to radi-
cally reduce the number of evaluations needed for redesign
by capturing relationships between behavior and design as
functional blueprints. These relationships and user-initiated
specification changes guide the design modifications.

Framework for Design Variation
This section briefly reviews the functional blueprint concept,
then describes the Morphogenetically Assisted Design Vari-
ation (MADV) architecture we have developed for apply-
ing it to problems in electromechanical design. The MADV
architecture and the miniDroid case study were developed
during the first year of a DARPA-funded effort.

Functional Blueprints (FBs)
FBs (Beal 2011) are inspired by regulatory processes in
natural morphogenesis, where the physical form of a de-
veloping organism is incrementally created with influence
from the dynamically changing requirements of other sys-
tems. FBs consist of four elements: 1) a system behavior
that degrades gracefully across some range of viability, 2)
a stress metric quantifying the degree and direction of stress
on the system, 3) an incremental program that relieves stress
through growth, shrinkage, or other structural change, and 4)
a program to construct an initial viable minimal system.

The basic idea is to keep a system always viable, like a
growing animal or an evolving species. The minimal system
gives a viable starting point. Since behavior degrades grace-
fully, it is possible to detect when design elements start to
become problematic. The stress metric, a domain-specific
measure of system adequacy, is fed as a diagnostic signal
to the incremental program, which repairs it, e.g., when the
amount of power drawn exceeds a threshold, the system be-
comes stressed and increases battery capacity. A collection
of FBs thus uses stress as a coordinating signal to determine
which subsystems can safely be modified at any given time.
When nothing is stressed, any element can be incrementally
modified; when functionality begins to degrade, stress rises
and is propagated through the network of FBs as each FB
acts locally to reduce stress.

!"#$%&'

()*+,'

-)*..*/0'

1$2.2$32/'

4256'789.#'

7#$:2%;2$<=#'

7#$:2%>9""'

7#$:2%>;'

4256'?#/0@8'

7@#.'A#*08@'

-)*..#$'?#/0@8'

4256'B*5@8'

>2@2$';2$<=#'

>2@2$'>9""'

()*+,'C/0)#'

7*+=)932/'

7@$#""'D/.=@"' -4"'
7*+=)932/''
E2+.=@#5'+#@$*E'

F/:*$2/+#/@''
:9$*9,)#'
>25#)'.9$9+#@#$'

7*+=)932/'2=@'

-4'"@$#""'*/''

-4'=.59@#'2=@'

Figure 3: Parameter/FB relations in miniDroid case study.

The correctness and completeness of the approach de-
pends on the set of FBs. In general, however, this approach
is expected to be applicable if the viable space is continu-
ous, well-connected, and all FBs have graceful degradation.
Assuring graceful degradation can be difficult however, if a
stress function is non-monotonic or has a non-deterministic
evaluation (e.g., from an unreliable simulation).

Even when all FBs are well-behaved, reaching a no-stress
solution is not guaranteed, because it may not exist or may
be blocked by intervening non-viable space. In this case,
however, FBs will still find the closest accessible solution
and indicate with stress which design aspects are limiting.

MADV Architecture
One of our goals is to enable users, who may be knowl-
edgable about a desired functionality but novices at elec-
tromechanical design, to create a functional design variant.
To enable this, we allow users to indirectly control design
variation through modifications of the simulated test envi-
ronment, e.g., changing the height of an obstacle to climb
over in Figure 4. Unlike the purely structural “tissue” mod-
els studied in (Beal 2011), electromechanical designs com-
prise many discrete components and parameters. Addition-
ally stress in electromechanical devices may not be com-
putable from design parameters, and instead is measured in-
directly through simulations. Our MADV architecture (Fig-
ure 2) coordinates a set of design FBs that operate on real-
valued parameters.

MADV is based on a three-phase design modification
loop, which runs until the design converges to a stress min-
imum. First, the functionality of the current design is an-
alyzed by a set of evaluators, which measure how well a
design accomplishes its goals. The input to each evalua-
tor is a subset of the current design parameters (e.g., robot
model, testing environment) and the outputs are a set of met-
rics (e.g., time to do a required task, body angle). We have
identified four classes of FBs (and associated evaluators) for
electromechanical design: closed form, quantized compo-
nent, simulation-driven, and user-command. Examples of
these FBs for the miniDroid are shown in Figure 3 and are
described in detail in the next section. Note that these evalu-
ators can potentially be very complex and costly to compute,
particularly the simulations.

The second phase is the morphogenetic simulator. Each
FB’s stress function converts evaluation metrics to stresses.
An FB may receive metrics (and thus stresses) from multi-
ple evaluators: these are blended together into a single stress

10

Figure 4: MADV UI allows design or environment changes.

measure, which is input to the FB’s incremental program to
generate update recommendations for parameters. Each pa-
rameter, in turn, may receive update recommendations from
multiple functional blueprints, which must be blended to-
gether to determine how the parameter is updated.

These blends of stress and updates are thus key to design
adaptation. At present, MADV uses the same heuristic func-
tion for both stress and parameter updates:

V = sign(
∑
i

Vi) ·maxi(Vi

∑
i Vi∑

i | Vi |
)

where the Vis are the inputs and V is the blended value. This
blending function preserves the direction of the sum of the
values, resulting in a value that is a fraction of the largest
value in that direction. It is designed to result in smaller
values when blending values with opposite signs, but pre-
serves the maximum value when all the values have the same
sign. For example, if Vi = {0, 1, 3, 6, 10} then V = 10; if
Vi = {−6,−3,−1, 5} then V = −2

Finally, a new, incrementally modified design is produced
from the updated parameters. For the work in this paper,
we use a simple parametric adjustment; the same frame-
work, however, can support more complex layout changes
like those in (Beal et al. 2012). With an appropriate choice
of stress metrics, incremental updates, and blending func-
tion, a system of FBs can be applied to make incremental
adjustments to the design of an electromechanical system.

Our implementation of the MADV architecture is not tied
to the miniDroid case study: the software is highly modular,
and intended to simplify the reuse of FBs: FBs, parame-
ters, and evaluator settings are all specified in XML files,
and evaluators are implemented as modular Java objects that
can enable arbitrarily complex problem-specific evaluation
(e.g., miniDroid simulations were invoked via remote pro-
cedure calls). This supports a user interface (Figure 4) that
allows the user to adjust both design and environment at-
tributes (e.g., step height, flipper length), to observe stress
levels (both per FB and total), and to visualize the design as
it is modified by successive iterations.

Case Study: miniDroid
We applied FBs and the MADV architecture to the prob-
lem of constructing a miniDroid variant that can climb over
much taller obstacles. For our case study, we selected a sub-
set of critical miniDroid functions, including climbing over
obstacles, flipping itself over, and agile maneuvering. We
then consulted with a robotics design expert to identify seven
key parameters affecting these functions and eight FBs for
evaluating them. The relations between FBs and parameters

are shown in Figure 3 (including the user’s desire to climb a
higher obstacle). Note that the simulation for step climbing
is affected by all of the design parameters.

To evaluate this approach, we: 1) created FBs controlling
this subset in four categories as described below, 2) applied
MADV to generate a large scale variation, and 3) evaluated
scalability by considering the complexity of the complete
miniDroid design. In the following subsections, we discuss
each phase in turn, as well as explaining in detail the four
different classes of functional blueprints and the relative ef-
fort required to create them.

Creation of Functional Blueprints
Closed-Form FBs Closed-form FBs are those whose eval-
uation can be done analytically on the basis of some set of
equations. These FBs are generally simple to create with
the assistance of a domain expert and very fast to evalu-
ate. Three FBs in our miniDroid case study are closed-form.
The Body Shape FB constrains the miniDroid’s length-to-
width ratio (reflecting a heuristic for assessing the agility of
a tracked vehicle) and is evaluated by calculating this ratio.
The Proportion FB maintains a ratio between flipper length
and body length to avoid problems with sensing and step-
climbing. The Flipping FB ensures that the flipper motor
has enough torque to lift the robot body. Other examples
of closed-form FBs might include regulation of robot cost,
battery endurance, and the strength of the flipper drive shaft.

Quantized-Component FBs Quantized-component FBs
handle design parameters that are chosen as a set from a re-
stricted library of available component variants. This is im-
portant for electromechanical design because most designs
rely on some Commercial Off The Shelf (COTS) compo-
nents like servos, microcontroller boards, and batteries. An
FB of this type is constructed by collecting a large set of
available instances of the component class and their param-
eters (e.g., from vendor data sheets), then approximating
an envelope around this class of components in parameter
space. The envelope edges act as a closed-form FB to keep
parameter values near available instances. While design
stress is high, parameters can be anywhere within the con-
tinuous envelope; when the design converges to a low-stress
state, parameters are set to the nearest available instance.
The graceful degradation condition ensures that quantizing
a component is unlikely to significantly impact design via-
bility. These are harder to construct than a closed-form FB,
due to the need to gather parameter data, but are similarly
fast to evaluate.

Our miniDroid case study uses one quantized-component
FB: the Servo FB relates the torque and mass of servo mo-
tors available to drive miniDroid flippers and wheels. Fig-
ure 5 shows the mass and torque dimensions and approx-
imating envelope (implemented as three closed-form FBs:
Servo-Mass, Servo-Torque, and Servo-MT (Mass Torque)).

Simulation-Driven FBs Simulation-driven FBs are gen-
erally used to evaluate complex functions that interact with
many different aspects of the design and which have no
closed-form evaluation. Use of simulation makes these FBs

11

0"
2"
4"
6"
8"
10"
12"
14"
16"

0" 20" 40" 60" 80"

To
rq
ue

'(k
g/
cm

)'

Mass'(g)'

Servo-Torque"

Se
rv
o-
M
as
s"

Se
rv
o-
M
as
s" Serv

o-MT"

Figure 5: Key properties of a servo library are captured using
functional blueprints that become stressed if the design ever
needs a servo outside the envelope of available servos.

!"#
!$#
!%#
!&#
"'#
""#
"$#
"%#

'!($#

'%($#

!!($#

!%($#

"!($#

)()*$#)()+$#)(),$#)(')$#)('!$#

!"
#
$%
&'
%(
)"#

*%
+,
$-
'.

/,
0%

1
.2
)$
%+/

$2
3$
$,
0%

4&$5%6$"27&%

4&8"3%()"#*".2%9$&3"-%+:;<%=."&%)'.2%3'*'&0%
-./01# 2341# ()"#*".2%>8"),%

Figure 6: Time and angle as possible stress metrics for
climbing function. Only angle degrades gracefully.

the most challenging to define and most computationally ex-
pensive to evaluate. We use one simulation-driven FB for the
miniDroid: the Climb FB maintains the miniDroid’s ability
to climb over obstacles. This is evaluated by a simulation in
which the robot climbs over a box-shaped step, implemented
with ROS (Robot Operating System) (Quigley et al. 2009)
using the Gazebo simulator.

When considering the task of a robot climbing over an
obstacle, there are multiple reasons climbing may fail, e.g.,
insufficient friction between the robot’s tracks and the ob-
stacle’s surface, or the robot may be too short. There is
no direct measurement to assess how stressed the robot is
while climbing. Our robotics expert indicated that climbing
time and body angle at the “critical point” might be good
metrics for the stress computation (our climbing algorithm
defines the critical point to be when the flippers are paral-
lel to the body). To know when the design is stressed, we
need a metric that gracefully degrades as the robot begins
to have trouble climbing the step. We ran simulations with
fixed robot size and increasing step height. Figure 6 shows
the behavior of the two possible stress metrics. From this
data, angle appears to be a better metric than time because it
progresses more gradually toward failure. Additionally, the
relationship between step height and climb time is less di-
rect: requiring the robot to complete the climb in the same
amount of time (thus move faster), would introduce stress
on components not directly related to climbing and create
the need for extremely rapid movements at larger scales. We
therefore defined the stress function of the climb FB based
on the robot angle measurement, as shown in Figure 7(a).

!"

#"
$#ᵒ" %#ᵒ"

&'()*"+'",-./--0"

1*
/-
00
"

(a) Step Climb

1"
0"

r+0.05" r+1"
Input"Ra/o"

St
re
ss
"

(b) Ratio Limit

1"
0"

0" 2P"
Input"Perturba/on"

St
re
ss
"

(c) Test Driver

Figure 7: Example FB stress functions: green is zero stress,
yellow is stressed, and red is non-viable.

User-Command FBs User-command FBs are used to pre-
vent parameter changes initiated by the user from making
a design non-viable. Instead of changing the parameter as
specified by the user, MADV instead creates a temporary
FB that incrementally shifts a design or evaluator parameter
towards the specified value. Parametric representation of the
design and the simulated environments thus enable a novel
user interaction, in which the user can observe and guide a
design as it shifts toward a new specification.

In this case study, the user requests one design change,
however there is no limit to the number of changes the user
can request. In this case, the user increases the initial 10cm
high step to 55cm, resulting in one user-command FB. If this
were implemented at once, the robot could not climb at all;
incremental change, however, facilitates the adaptation.

Generating a Large-Scale miniDroid Variation
We tested the ability of our FBs to generate viable varia-
tions with a user-increase of step height from 10cm to 55cm.
Faced with this challenge, MADVs successfully adapts the
miniDroid design over the course of 75 iterations (all of
which are functional intermediate designs), until the variant
can climb the larger step and no design function is stressed.
Figure 8 shows the changes in the stress levels and parame-
ters as the system converges to a new equilibrium, with some
parameters changing more than 5x with respect to their ini-
tial values. Note that the stress on various FBs rises and
falls over time as the design encounters different limiting
constraints, and that some FBs never become stressed at all.

Running the system to generate this new variant took
about an hour. The bottleneck is the step-climbing simu-
lation (everything else is executed in negligible time), due
to the approximation used for simulating tread locomotion.
This highlights the importance of using an approach like
MADV to guide the incremental process of design variation.

Scalability and Discussion
For an initial evaluation of scalability, we consulted with our
robotics expert to create a model of the full miniDroid con-
taining all design features of components larger than 1 cm3

in volume. Identifying all parameters and FBs took 3 hours
and yielded 66 parameters linked by 29 FBs (21 closed-
form, 3 quantized-component and 5 simulation-driven).

We thus see that, for the case of the miniDroid, the FB ap-
proach can be used to assist in generating a design variant,
and is scalable in terms of the effort required to create a com-
plete set of FBs. An important limitation in the current im-
plementation, however, is that user-command FBs targeting

12

0 10 20 30 40 50 60 70 800

0.2

0.4

0.6

0.8

Iteration number

St
re

ss
Stress for each FB during 5.5x variation

Total Stress
Body Shape
Climb
Step Height
Proportion
Flipping
Servo−Mass
Servo−Torque
Servo−MT

0 10 20 30 40 50 60 70 800

0.5

1

1.5

Iteration number

Si
ze

 in
 m

Parameter changes during 5.5x variation

Flipper Length
Body Length
Body Width
Step Height

Figure 8: Stress (top) and parameter size (bottom) over time
as the miniDroid design returns to a zero stress state after
increasing the step height from 10cm to 55cm.

environment parameters (e.g., step height) are operating in
an open-loop fashion. The reason for this is that we want the
environment to be independent of the robot’s capabilities.
Additionally, there may be many simulations-based FBs, for
example a rubble-field simulation, which means that the pa-
rameter set for the environment is open. The user-command
FBs must therefore be very conservative, or else risk driving
the design into non-viability (e.g., because the step is grow-
ing faster than the robot can adapt). This could be remedied
by limiting the updates of user-command FBs based on the
maximum stress experienced by any other FB.

Generalization and Comparison of FBs
Having successfully used our MADV architecture to adapt
the miniDroid design to varying conditions, we posed the
questions of 1) how our approach generalizes and scales,
and 2) how does it compare to standard approaches like Ge-
netic Algorithms (GAs). Since GAs evaluate the fitness of
large numbers of individuals per generation, which in the
miniDroid case involves invoking the (computationally ex-
pensive) simulator, it would be infeasible to use GAs in the
context of our case study. Instead, we randomly generated
abstract networks of design variables and FBs.

Experimental Setup
We consider a set of n design attributes and k FBs. Each
FB operates over a random pair of attributes with a desired
ratio set to a random value in [0.5, 2]. The stress function in
Figure 7(b) is used with the ratio between the two attributes
as its input. When stress is non-zero (in (0, 1]), the FB in-
crementally adjusts both attribute values by stress∗2 in the
direction that will reduce stress, e.g., if the ratio is high, the
numerator attribute will be decreased and denominator at-
tribute increased. An example network is shown in Figure 9.

One attribute’s value is perturbed with a user-command
FB that prescribes an increase at rate d towards a de-
sired value of 1 + P times the original value. The
stress function (Figure 7(c)) takes the normalized difference,

!"#
"$#

!%#
"&#

!'#
"(#

!&#
"%#

!)#
'$#

!*#
"'#

!"#$%"&%'#(#)*')+#

!,#$%"&%,#(#)*'-+#

!.#$%"&%.#(#)*/"+#

!0#$%,&%.#(#"*,1+#

!-#$%.&%'#(#)*/)+#

!/#$%'&%-#(#"*-/+#

!'#$%,&%0#(#"*.2+#

Figure 9: Example of a randomly generated functional
blueprint network with six attributes and seven blueprints.

0 100 200 300 400 500 6000

0.1

0.2

0.3

0.4

0.5
Stress for perturbation size 100%

Number of iterations

To
ta

l S
tre

ss

N=10
N=8
N=6
N=4

(a) Total Stress

0 100 200 300 400 500 6000

0.5

1

1.5

2 x 10−3 Partial Stress for perturbation size 100%

To
ta

l S
tre

ss

Number of iterations

(b) Non-Drive Stress

0 1 2 3 4 50

200

400

600

800
Convergence time

Perturbation Size

N
u
m
b
e
r

o
f

i
t
e
r
a
t
i
o
n
s

N=10
N=8
N=6
N=4

(c) Perturbation Size

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
20

40

60

80

100

120

140

St
ep

s

Drive rate

Convergence vs. Drive Rate

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

88

90

92

94

96

98

100

Pe
rc

en
t

Time to converge
Convergence rate

(d) Perturbation Drive Rate

Figure 10: The main component of the mean total stress (a)
is the driver used to inject the perturbation: the network of
ratio constraints rapidly adapts, keeping the mean stress over
all experiments very low (b). Convergence is robust against
a wide range of perturbation sizes (c) and drive rates (d).

desired−current
current , where current is the current attribute value

and desired is the goal. The incremental update when stress
is non-zero is min(|desired− current|, current ∗ d). We
call d the drive rate. Unless otherwise mentioned, we use
a drive rate of d = 0.005, a goal of P = 1, and run each
parameter configuration 20 times, each time running at most
1000 iterations of the design modification loop.

Results and Discussion
We begin by examining the behavior of stress over time,
considering four different random network sizes up to 20
FBs: (n, k) equal to (4, 4), (6, 7), (8, 12), and (10, 20). In
these experiments, the FBs always converge, leaving the per-
turbed attribute at its new value and all other attributes at ad-
justed zero-stress values. Figures 10(a) and 10(b) show the
total stress over time and stress only in the ratio constraint
network, respectively. For the latter, we see a “spiky” pattern
of small amounts of stress appearing and rapidly vanishing,
showing that these FBs are adapting to the driving perturba-
tion across a wide range of sizes. These figures show highly
effective adaptation, where stress from the perturbation is
dispersed as quickly as it is injected into the network.

This rapid and robust adaptation holds across a wide range
of perturbation sizes, drive rates, and number of FBs. Fig-

13

!"#$%#&'$()*+,(-"+. /+0*($('1+2+3(*'1+/ 4+0$"#'$()*, 5(6"+7,8 9$#",, :)*;"#<"*="
!" ## $%& &'&% & %&&(
>?+@A)+,$#",,+733.8B+C)C+DE FG HDI EJ.K EJID LDM
>?+@A+,$#",,+733K8B+C)C+DE GE H.F EJDK EJK FEM
>?+@A)+,$#",,+733.8B+C)C+DEE DD H.F KJID EJ.F FEM
>?+@A+,$#",,+733K8B+C)C+DEE GG LKL KJG EJED GDM

Table 1: FBs converge faster and more reliably than GAs.

ures 10(c) and 10(d) show variation in convergence time
with perturbation size ranging from P = 0.5 to 5 and for
perturbation drive rate ranging from d = 0.01 to d = 0.5
(100 iterations per d value), respectively. Only when d is
extremely high, changing attribute value by more than 35%
in a single iteration, does the system fail to converge.

GA Comparison
We compared FBs to GAs on the same set of random de-
sign constraint networks on a machine with a 2.2GHz Intel
Core i7 processor and 8GB of memory. While FBs use stress
signals received from each constraint to produce a new po-
tential solution from an old one, GAs use a fitness function
and natural selection to produce new generations of poten-
tial solutions. We used two fitness functions: FF1 is a func-
tion of distances from the desired and initial solutions, and
the sum of constraint violations; the more informed FF2 is
a function of the stress inputs used by the FBs. We imple-
mented our GA on top of JGAP (JGAP 2006) and experi-
mented with different settings of GA parameters like popu-
lation size, mutation rate, and magnitude, with the best re-
sults summarized here. The number of iterations for finding
a solution is bounded by 1000 for both algorithms.

Table 1 shows that the FBs search is much more focused,
and thus more efficient, than the search done by the GA.
Even with the better informed fitness function (FF2), FBs
are still superior to GAs. FBs achieved a convergence rate
of 100% as opposed to the best GA result of 85%, even
though each FB iteration involves less work than a GA it-
eration (a generation). The FBs also converge to a solution
that is stress-free, which is not the case for the GA. FBs
solved the networks 280 times faster than the GA with best
convergence rate. Additionally, the solutions reached by the
FBs were much closer to the initial solution. This increased
efficiency comes at the price of being limited to the viable
design spaces and prevents radically different (and poten-
tially superior) designs from being discovered.

Related Work
Constraint based local search (CBLS) engines such as Kan-
garoo (Newton et al. 2011) and Comet (Van Hentenryck and
Michel 2005) are shown to be efficient in solving constraint
satisfaction problems that are difficult for solvers based on
constructive search. In CBLS the problem is formulated
as constraint optimization where the objective is to mini-
mize the constraint violation penalties, and this is accom-
plished through exploring a local neighborhood of param-
eter changes. MADV and CBLS shares two major proper-
ties: 1) stress in FBs are analogous to constraint violation
penalty, and 2) the incremental update functions in FBs en-
sure the next parameter assignments will be in a neighbor-

hood of the previous assignments. The major difference be-
tween the two approaches is that the update functions in FBs
contain recipes on how to relieve stress by specifically iden-
tifying the parameters that need to be adjusted, as well as
the direction of adjustment. FBs thus require more knowl-
edge engineering, but require many less evaluations as they
explore the parameter space, which is of critical importance
when evaluation is costly, e.g., requiring simulation.

Systems engineering also considers the problem of guid-
ing the development of systems with intricate and diverse
relationships (Kossiakoff et al. 2011). Automated design
exploration has been applied to the conceptual design stage
where the “design” is largely schematic and not detailed. For
detailed design exploration, many automated design explo-
ration methods utilize evolutionary algorithms to generate
novel designs. Fan, Wang, and Goodman describe a method
of exploring a design space using evolutionary processes op-
erating on a bond graph model. Koza et al. explore the de-
sign of analog circuits by means of genetic programming
where the interfaces between interacting components is well
defined and the components are limited to a single technical
discipline.

Additionally, commercial modeling and simulation tools
have been created to aid in design variation. For example
the well-known simulation software developer, ANSYS, has
parametric design exploration tools (ANSYS, Inc. 2013) to
aid in design optimization. These tools are largely intended
for parameterized structural exploration of single compo-
nents such as optimizing the strength of a bracket, or fluid
flow through complex geometry.

Other approaches to adaptive design of functional struc-
tures includes Werfel’s work on distributed construc-
tion (Werfel and Nagpal 2007), and various projects in
self-reconfigurable robotics e.g., (Stoy and Nagpal 2004;
O’Grady, Christensen, and Dorigo 2009; O’Grady et al.
2010). These approaches, however, are generally intended
for more homogeneous and loosely coupled systems and
would be difficult to adapt to electromechanical design.

Contributions and Future Work
We have demonstrated that the functional blueprint concept
can be applied to electromechanical design, providing as-
sistive automation in the development of new design vari-
ants. Using our MADV architecture, we have presented a
case study of the miniDroid robot in which seven key FBs
are identified and used to produce a variant with parame-
ters changing by more than 5x from the original. We have
also demonstrated that under certain conditions FB networks
converge and vastly outperform GAs.

These results represent a successful proof of concept for
the MADV approach. Scaling up to practical application
to complex designs will require improvements to both the
software, including distributed parallel evaluator execution,
support for more complex FB specifications, and automatic
extraction of quantized-component envelopes; and to the
theory of FB networks, including hierarchical components,
dynamic adjustment of update size, adaptability of design
“body plan,” and improved convergence bounds.

14

References
ANSYS, Inc. 2013. ANSYS DesignXplorer.
http://www.ansys.com/Products/Workflow+Technology/AN
SYS+Workbench+Platform/ANSYS+DesignXplorer.
Beal, J.; Mostafa, H.; Mozeika, A.; Axelrod, B.; Adler, A.;
Markiewicz, G.; and Usbeck, K. 2012. A manifold operator
representation for adaptive design. In GECCO 2012.
Beal, J. 2011. Functional blueprints: An approach to mod-
ularity in grown systems. Swarm Intelligence Journal 5(3-
4):257–281.
Carroll, S. B. 2005. Endless Forms Most Beautiful. W. W.
Norton & Co.
Fan, Z.; Wang, J.; and Goodman, E. 2005. Cutting Edge
Robotics. Germany: Pro Literatur Verlag. chapter Exploring
Open-Ended Design Space of Mechatronic Systems, 707–
726.
JGAP. 2006. JGAP - Java Genetic Algorithms Package:
http://jgap.sf.net.
Kirschner, M. W., and Norton, J. C. 2005. The Plausibility of
Life: Resolving Darwin’s Dilemma. Yale University Press.
Kossiakoff, A.; Sweet, W. N.; Seymour, S.; and Biemer,
S. M. 2011. Systems Engineering Principles and Practice.
Wiley-Interscience, 2 edition.
Koza, J. R.; Bennett III, F. H.; Andre, D.; and Keane, M. A.
1998. Evolutionary design of analog electrical circuits using
genetic programming. In Adaptive Computing in Design and
Manufacture, 177–192. Springer.
Newton, M. A. H.; Pham, D. N.; Sattar, A.; and Maher, M. J.
2011. Kangaroo: An efficient constraint-based local search
system using lazy propagation. In Principles and Practice
of Constraint Programming, 17th International Conference,
CP, 645–659.
O’Grady, R.; Christensen, A. L.; Pinciroli, C.; and Dorigo,
M. 2010. Robots autonomously self-assemble into dedi-
cated morphologies to solve different tasks. In Autonomous
Agents and Multiagent Systems.
O’Grady, R.; Christensen, A.; and Dorigo, M. 2009. Swar-
morph: Multi-robot morphogenesis using directional self-
assembly. IEEE Transactions on Robotics 25(3):738–743.
Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.;
Leibs, J.; Berger, E.; Wheeler, R.; and Ng, A. Y. 2009.
ROS: an open-source robot operating system. In Proceed-
ings of the Open-Source Software workshop at the Interna-
tional Conference on Robotics and Automation (ICRA).
Stoy, K., and Nagpal, R. 2004. Self-reconfiguration us-
ing directed growth. In Intl. Symposium on Distributed Au-
tonomous Robotic Sys. (DARS).
Van Hentenryck, P., and Michel, L. 2005. Constraint-Based
Local Search. MIT Press.
Werfel, J., and Nagpal, R. 2007. Collective construction of
environmentally-adaptive structures. In Int’l Conf. on Intel-
ligent Robots and Sys.

15

	AAAI13
	Contents
	Index
	Help
	Terms
	AAAI

