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Abstract
A key weakness of agent frameworks is the difficulty of specify-
ing and controlling the global (emergent) behavior of the Multi-
Agent System (MAS) in which they operate. The spatial computing
language Proto, however, compiles descriptions of global behavior
into local behaviors that interact to produce the specified emergent
behavior. In this paper, we show how Proto can be used as a tool for
construction of multi-agent systems, allowing the MAS designer to
express the global behavior, while still creating a distributed solu-
tion. We compare and contrast Proto’s functionality to that of ex-
isting agent frameworks, showing how Proto is a good candidate
for the agent community’s first agent framework for societies of
agents.

1. Introduction
Agents are typically modeled as autonomous processes with sen-
sors and effectors. Agent frameworks (sometimes called agent ar-
chitectures) are the toolkits that aid in their development. Often,
agent-oriented programming is used to simplify the behavioral de-
scription of a complex system—decomposing a large problem into
a multi-agent system. The global effect of the Multi-Agent System
(MAS) is sometimes called an emergent behavior because it is not
explicitly expressed, but “emerges” from the aggregate behaviors
of the individual agents.

A key weakness of agent frameworks is their lack of ability to
specify or control the global behavior of the agent system. Instead,
agent frameworks provide tools for building single agents, in the
hopes that their aggregate local behaviors will produce the desired
global behavior.

Consequently, an agent society framework is needed for creat-
ing agents from a description of desired global behavior. We be-
lieve that the Proto [8] language and the collection of associated
tools in the MIT Proto [21] reference implementation, although not
designed for this purpose, are a good candidate for an initial agent
society framework.

Proto goes beyond the scope of typical agent frameworks by al-
lowing the programmer to specify the global behavior of a MAS
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Figure 1. Proto, an agent society framework, differs from tradi-
tional agent frameworks in that its input (a description of global be-
havior) is more closely related to the end goal (global multi-agent
system behavior) than descriptions of individual agent behaviors,
which are inputs to traditional agent frameworks.

in a simple and concise manner using a continuous space-time
abstraction. This continuous space-time abstraction can be ap-
proximated by any network of devices with limited communica-
tion range, allowing the Proto compiler to automatically convert
a global specification into a distributed program that is executed
by individual devices. The local interactions of the devices then
combine to produce an emergent behavior that necessarily approx-
imates the global specification. Thus, for any society of locally-
communicating agents distributed through a real or virtual space,
we can use Proto to predictably design the behaviors of the agent
society.

Figure 1 shows how Proto differs from typical agent frame-
works. Where traditional agent frameworks provide utilities for de-
scribing the behaviors of individual agents, Proto’s input is a de-
scription of the desired global behavior of the society of agents.
Such an agent society framework is a valuable tool for distributed
systems because an MAS designer’s goals are often global behav-
iors, and thus more readily expressed in terms of global behavior
descriptions rather than individual agent descriptions.

The specific contributions of this paper are:

• A description of how agents may be represented in Proto,
• A mapping of Proto semantics and design patterns to functional

concepts and architectural paradigms of agent frameworks,
• A review of relevant example implementations of the Proto

agent society framework, and
• A list of open research challenges.
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Figure 2. The Proto compiler produces, localizes, and optimizes
dataflow graphs created from Proto programs. This figure shows an
example dataflow graph for solving the quadratic formula.

2. Background and Approach
We begin with a brief review of Proto and the agent framework
functional concepts and architectural paradigms upon which we
map Proto.

2.1 Proto
MIT Proto[21], although often expressed as a single tool, has three
separate components: a language, a compiler and a virtual machine.
The Proto language[8] is a LISP-like pure-functional language
(although Proto is not a LISP). Primitives in Proto are mathematical
operations on fields, where a field is a function that maps every
point in a space to some value. For example, if we take the surface
of the Earth to be a space, then one field might map every location
to its current temperature, while another field might map every
location to its latitude and longitude. These fields may change over
time as well, as temperature does.

The composition of these elements with computing operations
produces a dataflow graph, such as the one in Figure 2, which
depicts the dataflow graph of the quadratic formula:

(def quadratic (a b c)
(/ (- (neg b)

(sqrt (- (pow b 2)
(* 4 a c))))

(* 2 a)))

These field-based computing operations can be categorized as
having one of two purposes: 1) creating patterns over space/time,
and 2) moving information across space. Proto programs, such
as those shown in Section 4, are designed by combining these
functional building-blocks to create the desired global behavior.

The MIT Proto compiler accepts the Proto language as input and
processes it in three loosely-coupled stages. The first stage converts
global descriptions of programs to functional operations on fields
of values. Next the functional operations are transformed to a local

execution on an amorphous medium [5], a computational model
where every point in a manifold1 is a computing device and each
device has access to the recent past state of a nearby neighborhood.
Finally, the continuous amorphous medium is approximated by the
discrete network of the spatial computer.

The last component of MIT Proto is the ProtoKernel virtual
machine[3]. This virtual machine has a core library and definitions
for a set of platform-specific functions (e.g., commands to move a
robot, report a debugging signal, broadcast a packet of data, etc.)
that are meant to be implemented by platform developers. There
are several existing implementations of the virtual machine, which
will be discussed more in Section 5.

Other collective programming frameworks [12, 13, 19, 22] ex-
ist, but Proto’s approach is unique. Butera’s paintable comput-
ing [13] relies on the programmer for low-level network details,
whereas Proto can make use of a space-time abstraction. Further-
more, paintable computing [13], TOTA [19], WaveScript [22], and
Smart Messages [12] all adopt an agent-oriented programming
paradigm that forces developers to concentrate on the individual de-
vice behaviors rather than their aggregate global behavior. Proto’s
advantages of specifying the global system behavior and utilization
of the amorphous medium space-time abstraction make it a perfect
tool for programming societies of agents.

2.2 Agent System Reference Model/Architecture
The Agent System Reference Model [27] (ASRM) defines func-
tional concepts that are typical in agent frameworks. The Agent
System Reference Architecture [23] (ASRA) builds on the ASRM
by describing how these agents function within an agent commu-
nity, or multi-agent system (MAS) and formalizes frameworks’ ar-
chitectural paradigms.

Both the ASRM and ASRA are created from static and run-
time analyses of existing agent frameworks (e.g., JADE [31],
Cougaar [17], and AGLOBE [16]). While neither document claims
to define a complete set of agent functionality, both documents aim
to capture the core set of common operations in major agent frame-
work implementations.

The ASRM defines seven functional concepts for agent systems:
1) Agent Administration, 2) Directory Services, 3) Security and
Survivability, 4) Messaging, 5) Mobility, 6) Conflict Management,
and 7) Logging.

The ASRA elaborates on the ASRM by defining architectural
paradigms for implementing the functional concepts within agent
frameworks. The remainder of this section explains the functional
concepts as defined in the ASRM and their architectural paradigms
as defined in the ASRA.

2.2.1 Agent Administration
The ASRM defines the Agent Administration functional concept as:

Agent administration functionality a) facilitates and enables
supervisory command and control of agents and/or agent
populations and b) allocates system resources to agents.
Command and control involves instantiating agents, termi-
nating agents, and inspecting agent state. Allocating system
resources includes providing access control to CPUs, user
interfaces, bandwidth resources, etc.

Architectural Paradigm: On-the-fly Administration On-the-fly
agent administration allows agents to be added, removed, stopped,
started, and configured while the agent system is running. It is not
necessary to specify the number or types of agents a priori.

1 A manifold is a geometric space that locally resembles Euclidean space,
but globally may be more complex (i.e., the surface of a large sphere).



Architectural Paradigm: Pre-configured Administration Pre-
configured agent administration requires the number and type of
agents to be selected prior to running the agent system.

2.2.2 Directory Services
The ASRM defines the Directory Services functional concept as:

Directory Services functionality facilitates and enables lo-
cating and accessing shared resources.

Architectural Paradigm: Subscription-based Services With
subscription-based directory services, agents can query a central
repository to discover services. Agents make subscriptions to par-
ticular services to register for any service changes (e.g., new agents
offering the service, agents no longer offering the service).

2.2.3 Security and Survivability
The ASRM defines the Security and Survivability functional con-
cept as:

The purpose of security functionality is to prevent execu-
tion of undesirable actions by entities from either within or
outside the agent system while at the same time allowing
execution of desirable actions. The goal is for the system to
be useful while remaining dependable in the face of malice,
error or accident.

The ASRA does not currently contain architectural paradigms
for Security and Survivability.

2.2.4 Messaging
The ASRM defines the Messaging functional concept as:

Messaging functionality facilitates and enables information
transfer among agents in the system.

Architectural Paradigm: Direct Messaging Direct messaging
encodes inter-agent messages for transport and sends them in a one-
to-one, one-to-many (multi-cast), or one-to-all (broadcast) style.

Architectural Paradigm: Shared-object Messaging Shared-
object messaging is a blackboard-style [17] communication
paradigm where messages are contributed to one or more message
repositories—addressed to the agents for whom they are destined.

2.2.5 Mobility
The ASRM defines the Mobility functional concept as:

Mobility functionality facilitates and enables migration of
agents among framework instances typically, though not
necessarily, on different hosts. The goal is for the system to
utilize mobility to make the system more effective, efficient
and robust.

Architectural Paradigm: Serialization Mobility The process of
serialization mobility occurs when the framework stops the agent’s
execution on one platform, serializes the agent with its current
state, sends the serialized agent to another platform (often using
the Messaging functional concept described in Section 2.2.4), and
starts execution of the agent on the new platform.

Architectural Paradigm: Shared-object (state) Mobility In
shared-object mobility, the agent and its state are updated on all
platforms. Along with the agent’s state, the framework keeps track
of the platform(s) on which the agent is executing. Each platform
is responsible for monitoring which agents it should be running.

2.2.6 Conflict Management
The ASRM defines the Conflict Management functional concept as:

Conflict management functionality facilitates and enables
the management of interdependencies between agents ac-
tivities and decisions. The goal is to avoid incoherent and
incompatible activities, and system states in which resource
contention or deadlock occur.

The ASRA does not currently contain architectural paradigms
for Conflict Management.

2.2.7 Logging
The ASRM defines the Logging functional concept as:

Logging functionality facilitates and enables information
about events that occur during agent system execution to be
retained for subsequent inspection. This includes but does
not imply persistent long-term storage.

Architectural Paradigm: Direct Logging Direct logging writes
to standard-out (e.g., C’s printf, Java’s System.out, etc.) or
a language’s built-in logging mechanism (e.g., logging.Logger
from Python, java.util.logging from Java).

Architectural Paradigm: Indirect Logging Indirect logging
writes to some external logging utility (i.e., log4j [1]).

2.3 Approach
We begin by mapping the general concept of “agent” into the Proto
framework. Then, for each functional concept of the ASRM, we
will discuss its implementation in Proto, mapping the behavior of
Proto to an architectural paradigm from the ASRA where such ex-
ists. The purpose of this is to establish Proto as an agent framework
for societies of agents. This also has the side benefit of contribut-
ing an additional example of agent framework analysis to the the
ASRA, which is meant to be a “living document.”

3. Mapping Agents to Proto
The term “agent” broadly refers to an autonomous entity with
sensors and actuators. Due to the term’s loose definition it is often
overloaded across domains. In this section, we first examine the
internals of Proto agents, then define the different notions of agents
within Proto.

3.1 Agent Internals
Russell and Norvig [29] define the internal components of an agent
as: sensors, effectors, and an agent program (including internal
state) 2. Sensors and effectors are handled in a device-specific
manner in Proto, by means of an extensible plugin system. For
instance, the code below shows sensor and effector declarations that
are then used a program running with three different test sensors

2 Note that the Russell and Norvig model is only one of a number of widely-
used models of agent internals. As it is often possible to map these models
to one another, we believe that Proto can be mapped to most other agent
models as well.



Figure 3. Three Proto nodes run in simulation with test sensors
(highlighted color underneath the node) and red, blue, and green
LED actuators at various heights.

(sense n) and three different actuators for enabling/disabling a
device’s colored LED at a given height (red, blue, and green).

;; Sensor/Effector declarations
(primitive sense (scalar) scalar)
(primitive red (scalar) scalar)
(primitive green (scalar) scalar)
(primitive blue (scalar) scalar)
;; Example program
(all

(if (sense 1) ;; if sensor-1 is enabled
(red 5) ;; turn on red LED at height 5
(red 0)) ;; else, turn off red LED

(if (sense 2) ;; if sensor-2 is enabled
(blue 10) ;; turn on blue LED at height 10
(blue 0)) ;; else, turn off blue LED

(if (sense 3) ;; if sensor-3 is enabled
(green 15) ;; turn on green LED at height 15
(green 0))) ;; else, turn off green LED

Figure 3 shows this code running in simulation on three nodes
where the large circle indicates the test sensor and the LED is a
smaller colored circle floating above the node at a specified height.

As defined by Russell and Norvig [29], an agent program “maps
from a percept to an action” where percepts are combinations of
sensors and internal state, and actions are combinations of effectors
and state transitions. Proto expressions, such as the one shown
above, can define such agent programs, but the details depend on
how we draw the boundaries between agents. The remainder of this
section discusses the two different notions of agent definitions and
how they are represented in Proto.

3.2 Hardware vs. Software Agents
In hardware-oriented fields, an agent usually refers to a single
device or machine. In contrast, software-oriented fields label au-
tonomous processes as agents. Thus, many software agents may be
running on a single hardware agent. On the other hand, multiple in-
stances of a single software agent can execute on multiple hardware
agents.

Proto can be mapped to notions of both software and hardware
agents. In Proto, hardware agents are the devices that comprise the
discrete approximation of the continuous space described by the
amorphous medium abstraction. In other words, each device in the
spatial computer network is a separate hardware agent. In Proto,
each hardware agent runs the same program. For example, if the
global behavior is (red 1), then all the devices will enable their
red LED. This example illustrates the case of a single software
agent (a simple agent that enables a red LED) running on multiple
hardware agents (devices).

Software agents in Proto, on the other hand, are more an inter-
pretation of the structure of a program. We shall take a software
agent to be a spatially-executed thread—a sub-program that runs
on some set of devices in the spatial computer network. For exam-
ple, using the all operator, an arbitrary number of separate func-
tions are evaluated simultaneously, and each can represent a differ-
ent agent.

(all
( AGENT ONE )
( AGENT TWO )
( AGENT THREE ))

In the above case, all three agents are run on every device in the
network. If we wish to restrict the execution of an agent to a subset
of devices, the if operator can be used.

(if ( CONDITION )
( AGENT ONE )
( AGENT TWO ))

In the case of restriction, agent one runs on any device where
condition is true. Agent two runs only on the devices where
condition is false.

These “software agent” examples illustrate the case of multiple
agents running on the same physical device. In this paper, we
compare and contrast the functional concepts provided by agent
frameworks to the properties of both hardware and software agents
in Proto.

4. Functional Concepts Supported in Proto
4.1 Agent Administration
In agent frameworks, the creation and destruction of agents is
governed by the Agent Administration functional concept. There
are a number of ways that Proto can “create” agents. Proto can be
used to spawn new hardware agents using the clone operator and
terminate agents using die. When a device is cloned, a new device
is added to the spatial computer network and the global program is
started on the new device.

For example, the following program clones an agent every sec-
ond:

(if (= (mid) (timer)) ;; if current time equals the machine’s ID #
(clone (mid)) 0) ;; clone the machine

However, varying the number of hardware agents in Proto has
little effect on the global behavior unless the devices are con-
strained, physically or algorithmically, to maintain a particular den-
sity. When hardware devices are scattered sparsely in space, as in
many swarm or sensor applications, changing the number of de-
vices simply changes the quality of the global-to-local approxima-
tion, or the resolution of the space that the devices occupy.

Creating new software agents is accomplished in the global be-
havior description as described in Section 3.2. Proto allows sensors
and effectors to be included as functions in the language, making
agent programs simple and concise to read and write.

Proto’s Agent Administration is an example of On-the-fly Ad-
ministration. The global behavior description only contains infor-
mation about how the collective agents behave; but administration
attributes, such as the number, structure, and distribution of agents
are determined at run-time.

4.2 Directory Services
In many agent frameworks, directory services are implemented
by providing naming and query-matching services, similar to



Figure 4. Proto provides content-based addressability to find the
nearest service provider. In this example, each node calculates and
displays their Euclidean distance to the service provider (orange).

Figure 5. Proto’s directory services simplify task replication as
shown in this example where the client nodes (orange) draw their
shortest path to any service provider (purple).

UDDI [14]. Proto provides content-based addressability as a way
searching for agents that provide a specific service.

For example, the following program, shown in Figure 4 indi-
cates that the devices should calculate their Euclidean distance to
the closest device whose boolean sensor (sensor number one) is
activated:

(distance-to (sense 1)) ;; display distance to sensor

The significance of this statement is that (sense 1) returns a
mapping of values (in this case true if the sensor is enabled, false
otherwise) to devices. Thus, Proto’s content-based addressability
has a direct correlation to the typical mapping of services to their
URI.

Furthermore, content-based addressability simplifies the repli-
cation of tasks. In the following example, shown in Figure 5,
multiple (sense 1) listeners are each connected to their closest
(sense 2) service.

(connect (sense 1) (sense 2)) ;; display shortest path from all
;; sensor-1 to the closest sensor-2

In a slightly more complex example, consider the most com-
mon architectural paradigm of directory services in agent frame-
works: Subscription-based Services, or publish-subscribe (pub-
sub). Proto can be used to emulate pubsub functionality with a

function such as the one below, where a set of subscribers listen
for a stream from a service.

(def pubsub (service subscribers stream)
;; if subscriber is subscribed to service
(if (fold + 0 (connect subscribers service))

;; send the subscriber any updates via stream
(broadcast service stream 0)))

The ASRA lacks a decentralized approach to Directory Ser-
vices, such as the one used by Proto. This is an example of an
area where Proto might help to guide the future development of
the ASRA.

4.3 Security and Survivability
Agent frameworks need to protect the agent platform from undesir-
able actions. This notion of security could mean preventing harmful
code (e.g., from a migrated agent) from executing. Similarly, sur-
vivablilty describes the agent system’s ability to remain “depend-
able in the face of malice, error or accident” [27].

Security is an open area for research in Proto, while survivabil-
ity is one of Proto’s greatest strengths. Because survivability is of-
ten implicit in the specification of the global behavior of the system,
Proto programs have a high-degree of survivability naturally.

[6, 9, 10] talk about self-repairing functions, such as gradient-
based distance calculations (e.g., the one used in distance-to).
These functions have the property that, if a change occurs during
computation, the function will correct its values in a predictable
short amount of time. Furthermore, the feed-forward composition
of such self-repairing functions also results in self-repairing com-
posite functions.

For example, the following program can be used to compute all
the nodes along the shortest path between two devices (source and
destination):

(def shortest-path (source destination)
(letfed

;; di distance from src to dest from executing node
((di (+ (distance-to source)

(distance-to destination)))
;; min-di is the shortest path distance
(min-di (min-hood

(broadcast destination di))))
;; if executing node is on the shortest path
(if (and (not (= min-di (inf)))

(= min-di di))
(blue 1) ;; turn on blue LED
(blue 0)))) ;; else, turn off blue LED

The program executes at every time-step, re-calculating the
nodes along the shortest path and enabling their blue LED. If,
after the shortest path is computed, a change affects the shortest
path (i.e., node movement causes a network disconnection), the
shortest path is recomputed and updated automatically. Figure 6
shows Proto agents automatically re-computing the shortest path
(in blue) after a disruption in the network occurs.

4.4 Messaging
Standard agent frameworks tend to provide an API for communica-
tion between agents. The purpose of the API is to abstract the agent
communication protocol from the agent programmer. Proto devices
take this abstraction to the next level with implied communication.

With implied communication, devices share their state with
their neighbors after every round of program execution. This allows
the programmer to easily write programs whose information is
distributed across many devices. In Proto, implied communication
is contained in neighborhood functions (e.g., int-hood), which are



(a) Before Disruption (b) After Disruption

Figure 6. Proto’s implicit survivability is illustrated by the
shortest-path program that re-calculates the nodes along the short-
est path (in blue) after a disruption occurs in the network.

used for implementing the following common pattern in distributed
algorithms:

• Gather data from neighbors,
• Do some computation separately on each neighbor’s data, and
• Return a value combining the results from the neighbors.

The following program, depicted in Figure 7, makes use of implied
messaging and device mobility (discussed in Section 4.5) as a way
of clustering devices:

(mov ;; move the device
(normalize ;; normalize the vector

(int-hood ;; integrate over each neighbor’s vector
(nbr-vec)))) ;; return distance-vector to each neighbor

In this program, nbr-vec is used as a way of acquiring the vector-
distance to each neighbor, and then int-hood is used to compute
the integral of the vectors over the neighborhood. These two com-
bine to imply that devices must send messages exchanging local-
ization information.

In traditional agent frameworks, there are many barriers to emu-
late this messaging functionality. First, individual (local) agent be-
haviors are defined. Next, a protocol is established for communicat-
ing between devices. Of course, if multiple messages from different
agents are received concurrently, then the messaging protocol must
be sufficiently expressive to represent each individual evaluation.
By implicitly sharing state between neighboring devices in the spa-
tial computer, Proto saves the programmer from implementing the
individual agent behaviors and messaging protocol.

Software agents in Proto also use a form of implied communi-
cation. Communication between operator evaluations are accom-
plished using fields—mappings of values to devices. For instance,
the following function definition, nav-grad, shown in Figure 8,

(a) t = 1.0 (b) t = 2.0

(c) t = 3.0 (d) t = 4.0

(e) t = 5.0 (f) t = 6.0

Figure 7. Implicit messaging (and device mobility) allows Proto
devices to share their locations to create clusters without defining
an inter-agent communication protocol.

passes messages from navigation agents (green) in order to direct
moving agents (blue) toward a source device (orange).

(def share-distance-to (is-calculating source)
(let ((base (if is-calculating ;; base names the

(distance-to source) ;; distance to source
(inf)))) ;; or infinity

(green (< base (inf))) ;; enable green LED if immobile
(mux is-calculating ;; if mobile

base ;; move toward source
;; else, pass along navigation directions to neighbors
(min-hood (+ (nbr-range) (nbr base))))))

(def nav-grad (is-mover source)
;; g is a distance-based gradient to source

(let ((g (grad (share-distance-to
;; only compute g on non-movers
(not is-mover) source))))

;; if I’m a mover agent and the gradient is non-zero
(mux (and is-mover (> (len g) 0))

;; follow the gradient to the source
(normalize g)
;; all other agents remain stationary
(tup 0 0))))

In the navigation agents, the variable g names a self-healing gra-
dient [6] based on the distance to the source device. That gradient is
maintained based on navigation information passed between agents
in the share-distance-to function.



Figure 8. Proto software agents use language scoping rules to pass
navigational messages through immobile agents (green), that direct
“mover” agents (blue) toward a source device (orange).

Communication between software agents is governed by the
scope of the variables between the agents. Similar to LISP, vari-
able scope in Proto is lexical (static), however let blocks allow a
variable to have dynamic scope. Thus, the messages between Proto
software agents are passed through shared memory, often made
available by the hardware agent’s implied communication.

Communication occurs between the software agents in the form
of fields, where a field is a mapping of values to devices in the
network. Dataflow graphs, such as the one diagramed in Figure 2
depict these fields as arrows between operators.

Proto’s implied communication is a form of Direct Messaging
as described in the ASRA because, after every computation step,
the agent’s state is serialized and broadcast to all its neighbors.

4.5 Mobility
Mobility in hardware agents is accomplished by moving the phys-
ical devices. A special actuator, mov, accepts a 3-vector as input
and moves the device in the direction of the vector, at the speed
described by the vector’s magnitude. The movement actuator is de-
scribed in more detail in [4].

Modifying the execution space of a software agent over time
mobilizes that agent. In other words, mobility means the same pro-
gram executes on different machines at different times. [7] de-
scribes some of the inherent complexities with identifying and ma-
nipulating processes with spatial extent.

For example, the code below, shown running in Figure 9, mi-
grates an agent across a network once a sensor is triggered. To do
so, this code relies on (a) a sensor being activated and (b) implicit
messaging (see Section 4.4) to spread information across the net-
work. The information contains a flag that indicates if the sensor
has been triggered—indicating that the agent should be executing.
Figure 9 shows how the agent (which enables a red LED) propa-
gates itself throughout the network over time. Furthermore, when
a node moves to connect a previously disconnected network seg-
ment (in Figure 9(f)), the mobile agent showcases its survivablilty
by migrating to the newly connected nodes.

;; enable the red LED on devices with a running agent
(red (rep running 0

;; if an agent is running
(if (= (mid) running)

;; look for sensor-1 on any neighbors
(+ (any-hood (nbr (sense 1))) running)
;; else, mobilize the agent to neighbors
(max-hood (nbr running)))))

(a) t = 1.0 (b) t = 7.0

(c) t = 15.0 (d) t = 20.0

(e) t = 30.0 (f) t = 37.0

Figure 9. Mobility in Proto is controlled by restricting agent exe-
cution to different spaces (nodes) at different times. In this exam-
ple, the mobile agent migrates to network neighbors and turns an
LED red. Note that in Figure 9(f) a node moves to connect the two
previously disjoint networks.

Proto’s notion of mobility is a form of Shared-object Mobility
because the agent behavior and its local state exist on each Proto
device. Mobility is controlled by simply changing the operational
space—or branch of execution—of the device. In our example,
both agents and all their necessary state exist on all of the devices.
An agent migration occurs when the switch changes and execution
ends on one node and begins on another3.

4.6 Conflict Management
The lexical scoping of the Proto language prevents some conflicts
from occurring. Other than the lexical scoping rules, there are cur-
rently no built-in facilities for managing conflicts in Proto. How-
ever the language does not preclude conflict mediation. For ex-
ample, the elect operator is a self-stabilizing symmetry-breaking
function, used for cooperative election of regional leaders in a net-
work. The following code, shown executing in Figure 10, illustrates

3 Migration actually occurs between sets of nodes, not just single nodes.



Figure 10. Proto makes use of self-stabilizing symmetry-breaking
functions for conflict management as shown by the cooperatively
elected leaders (blue) in each network.

elect working in a partitioned network where blue nodes are the
elected leaders.

(def elect (radius)
;; pick a random value (0-1)
(let ((id (once (rnd 0 1))))

;; leader has the lowest value
(= id (rep minid id

;; compute distance to the leader
(let ((dist (distance-to (= id minid))))

(mux (> dist radius)
;; leader returns its value
id
;; establish an area around the leader
(mux (<= dist (* 0.25 radius))

;; inside the area is the leader’s value
;; (the lowest of the group)
(min-hood (nbr minid))
;; outside that area is infinity
(inf))))))))

(blue (elect 400)) ;; enable the elected leaders’ blue LEDs

In the elect operator, every device randomly choses a value
from (0–1). The device with the lowest value is designated as the
leader. A small area around the leader assumes the leader’s value,
and everything outside that area uses the value infinity, up until
it is far enough away that a new leader can be elected for another
region. When two areas overlap, only the lower-value area retains
its elected leader. Thus, the set of leaders self-stabilizes to produce
a pattern where all leaders are separated by at least half the specified
region radius and no device is more than radius from some
leader. Of course, these devices are cooperating during the election
process. Operation with non-cooperative agents is an open research
area for Proto.

4.7 Logging
Distributed logging is a current area of research [2, 28]. One par-
ticular method that has been explored in Proto is having each de-
vice maintain its own list of log messages. Processing the log mes-
sages then becomes similar to making a query on a distributed
database [11, 25]. Logging is an area of future work for Proto.

5. Framework Implementations based on Proto
This section illustrates the breadth of applicability of Proto by
briefly describing several implementations of the Proto framework
for different platforms. Typically, the framework is applied to a

Figure 11. ProtoSim is a robust, extensible simulator for Proto
agents. In this example, Proto is being used to semi-automatically
wire the internal components of a robot.

Figure 12. A ProtoSim plugin allows Proto agents to receive
collision-detection and realistic physics feedback from the Open
Dynamics Engine (ODE).

platform by creating a variant implementation of the ProtoKernel
virtual machine that is integrated with that platform’s systems for
communication, sensing, and actuation.

5.1 ProtoSim
ProtoSim is the reference implementation of networked execution
of Proto code, bundled with MIT Proto and tied to the reference
implementation of the ProtoKernel virtual machine. The simulator
takes Proto code, invokes the reference compiler to produce a Pro-
toKernel binary, and executes it on a 2D or 3D distribution of sim-
ulated devices, each running an instance of the reference ProtoKer-
nel virtual machine. This is visualized in 3D using OpenGL [24] for
display and to allow the user to manipulate the running devices, but
may also be run in a non-interactive mode without visualization
for batch simulation. Figure 11 shows ProtoSim running a Proto
program to semi-automatically wire the internal components of a
robot.

ProtoSim includes a plugin system for adding sensors and ef-
fectors, adjusting communication models, or a number of other
such modifications. For example, the Open Dynamics Engine
(ODE) [30] was integrated with ProtoSim to provide feedback to
Proto agents for collision-detection and a realistic physics. Fig-
ure 12 shows devices with different body-types interacting within
ProtoSim.



(a) Mica2 Motes (b) SwarmBots

(c) iCreate (d) Topobo

Figure 13. Proto has been applied to hardware platforms for sensor
networks (a), swarm robotics (b,c), and modular robotics (d). (Photo
credit: (b) James McLurkin and Swaine Photography, (c) Nikolaus Correll,
(d) Hayes Raffle and Amanda Parkes)

5.2 Hardware Platforms
Proto has also been implemented on a number of hardware plat-
forms (Figure 13). One family of these are sensor network plat-
forms, such as Mica2 Motes [18]. These are typically based on
a small AVR processors, with highly constrained processing and
memory (e.g., 16MHz 8-bit process and 4K of RAM on the Mica2),
for which ProtoKernel is well-suited. Proto has also been im-
plemented on swarm robotics platforms, such as McLurkin and
iRobot’s swarm robots [20] and the iRobot iCreate [15]. On these
platforms, resources tend to be more plentiful, as the energy con-
straints are typically dominated by movement, rather than computa-
tion, sensing, or communication. Proto has also been implemented
on the Topobo [26] modular robotics platform, where the user as-
sembles a structure of mixed passive and active physical linkages
and wired USB network connectors.

On such hardware platforms, Proto is typically hosted as a
component within the individual agent’s operating system. For
example, on the Mica2, Proto runs on top of TinyOS, and on the
iCreate is a thread in OpenWRT Linux. Other agent services, such
as localization or fine-grained motor control, are connected with
Proto as sensors and actuators.

6. Open Research Challenges
The ASRM and ASRA do not state the minimum requirements
for an agent framework, but instead explain the potential feature-
sets of such systems through functional concepts and architectural
paradigms. Proto provides many such feature sets, but there are
a number of open research challenges in providing some of the
functional concepts.

First, there is little support for managing conflicts between dis-
parate groups of Proto agents. This is largely due to the fact that
Proto has been used exclusively for cooperative agent societies.
Research in non-cooperative Proto agents is thus an open research
area.

Likewise, while Proto nodes are resilient to small errors in
signals and large topology changes [4, 6], they have no inherent

ability to resist malicious information. Security is therefore a major
open research area for Proto.

Finally, Proto lacks a viable system for distributed runtime log-
ging (although ProtoSim does implement a shared-output logging
system). One potential approach identified for this area is to treat
logging as a distributed database problem, perhaps drawing on ex-
isting data-collection paradigms developed by the sensor networks
community.

7. Conclusion
Traditional agent frameworks fall short in that they provide func-
tionality only for defining individual agent behaviors rather than
defining global MAS behaviors. In this paper, we first map notions
of agents to Proto’s concepts of agents. Next, using the functional
concepts and architectural paradigms laid out in the ASRM [27]
and ASRA [23], we define the functional concepts supported by
Proto—both the language and the compiler. Finally, we discuss
some of the relevant virtual machine implementations of Proto and
the open research challenges for developing Proto as a fully fea-
tured agent framework. Despite these challenges, we argue that
Proto’s simple and elegant implementations of agent society inter-
actions make it a viable candidate to become the first agent frame-
work for agent societies.
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